mirror of
				https://github.com/immich-app/immich.git
				synced 2025-11-03 19:29:32 -05:00 
			
		
		
		
	* modularize model classes * various fixes * expose port * change response * round coordinates * simplify preload * update server * simplify interface simplify * update tests * composable endpoint * cleanup fixes remove unnecessary interface support text input, cleanup * ew camelcase * update server server fixes fix typing * ml fixes update locustfile fixes * cleaner response * better repo response * update tests formatting and typing rename * undo compose change * linting fix type actually fix typing * stricter typing fix detection-only response no need for defaultdict * update spec file update api linting * update e2e * unnecessary dimension * remove commented code * remove duplicate code * remove unused imports * add batch dim
		
			
				
	
	
		
			78 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from pathlib import Path
 | 
						|
from typing import Any
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import onnx
 | 
						|
import onnxruntime as ort
 | 
						|
from insightface.model_zoo import ArcFaceONNX
 | 
						|
from insightface.utils.face_align import norm_crop
 | 
						|
from numpy.typing import NDArray
 | 
						|
from onnx.tools.update_model_dims import update_inputs_outputs_dims
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
from app.config import clean_name, log
 | 
						|
from app.models.base import InferenceModel
 | 
						|
from app.models.transforms import decode_cv2
 | 
						|
from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelSession, ModelTask, ModelType
 | 
						|
 | 
						|
 | 
						|
class FaceRecognizer(InferenceModel):
 | 
						|
    depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)]
 | 
						|
    identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        model_name: str,
 | 
						|
        min_score: float = 0.7,
 | 
						|
        cache_dir: Path | str | None = None,
 | 
						|
        **model_kwargs: Any,
 | 
						|
    ) -> None:
 | 
						|
        self.min_score = model_kwargs.pop("minScore", min_score)
 | 
						|
        super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
 | 
						|
 | 
						|
    def _load(self) -> ModelSession:
 | 
						|
        session = self._make_session(self.model_path)
 | 
						|
        if not self._has_batch_dim(session):
 | 
						|
            self._add_batch_dim(self.model_path)
 | 
						|
            session = self._make_session(self.model_path)
 | 
						|
        self.model = ArcFaceONNX(
 | 
						|
            self.model_path.with_suffix(".onnx").as_posix(),
 | 
						|
            session=session,
 | 
						|
        )
 | 
						|
        return session
 | 
						|
 | 
						|
    def _predict(
 | 
						|
        self, inputs: NDArray[np.uint8] | bytes | Image.Image, faces: FaceDetectionOutput, **kwargs: Any
 | 
						|
    ) -> FacialRecognitionOutput:
 | 
						|
        if faces["boxes"].shape[0] == 0:
 | 
						|
            return []
 | 
						|
        inputs = decode_cv2(inputs)
 | 
						|
        embeddings: NDArray[np.float32] = self.model.get_feat(self._crop(inputs, faces))
 | 
						|
        return self.postprocess(faces, embeddings)
 | 
						|
 | 
						|
    def postprocess(self, faces: FaceDetectionOutput, embeddings: NDArray[np.float32]) -> FacialRecognitionOutput:
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "boundingBox": {"x1": x1, "y1": y1, "x2": x2, "y2": y2},
 | 
						|
                "embedding": embedding,
 | 
						|
                "score": score,
 | 
						|
            }
 | 
						|
            for (x1, y1, x2, y2), embedding, score in zip(faces["boxes"], embeddings, faces["scores"])
 | 
						|
        ]
 | 
						|
 | 
						|
    def _crop(self, image: NDArray[np.uint8], faces: FaceDetectionOutput) -> list[NDArray[np.uint8]]:
 | 
						|
        return [norm_crop(image, landmark) for landmark in faces["landmarks"]]
 | 
						|
 | 
						|
    def _has_batch_dim(self, session: ort.InferenceSession) -> bool:
 | 
						|
        return not isinstance(session, ort.InferenceSession) or session.get_inputs()[0].shape[0] == "batch"
 | 
						|
 | 
						|
    def _add_batch_dim(self, model_path: Path) -> None:
 | 
						|
        log.debug(f"Adding batch dimension to model {model_path}")
 | 
						|
        proto = onnx.load(model_path)
 | 
						|
        static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
 | 
						|
        static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
 | 
						|
        input_dims = {proto.graph.input[0].name: ["batch"] + static_input_dims}
 | 
						|
        output_dims = {proto.graph.output[0].name: ["batch"] + static_output_dims}
 | 
						|
        updated_proto = update_inputs_outputs_dims(proto, input_dims, output_dims)
 | 
						|
        onnx.save(updated_proto, model_path)
 |