mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-29 18:05:14 -04:00 
			
		
		
		
	* feat(ml): ARMNN acceleration for CLIP * wrap ANN as ONNX-Session * strict typing * normalize ARMNN CLIP embedding * mutex to handle concurrent execution * make inputs contiguous * fine-grained locking; concurrent network execution --------- Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
		
			
				
	
	
		
			281 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <fstream>
 | |
| #include <mutex>
 | |
| #include <atomic>
 | |
| 
 | |
| #include "armnn/IRuntime.hpp"
 | |
| #include "armnn/INetwork.hpp"
 | |
| #include "armnn/Types.hpp"
 | |
| #include "armnnDeserializer/IDeserializer.hpp"
 | |
| #include "armnnTfLiteParser/ITfLiteParser.hpp"
 | |
| #include "armnnOnnxParser/IOnnxParser.hpp"
 | |
| 
 | |
| using namespace armnn;
 | |
| 
 | |
| struct IOInfos
 | |
| {
 | |
|     std::vector<BindingPointInfo> inputInfos;
 | |
|     std::vector<BindingPointInfo> outputInfos;
 | |
| };
 | |
| 
 | |
| // from https://rigtorp.se/spinlock/
 | |
| struct SpinLock
 | |
| {
 | |
|     std::atomic<bool> lock_ = {false};
 | |
| 
 | |
|     void lock()
 | |
|     {
 | |
|         for (;;)
 | |
|         {
 | |
|             if (!lock_.exchange(true, std::memory_order_acquire))
 | |
|             {
 | |
|                 break;
 | |
|             }
 | |
|             while (lock_.load(std::memory_order_relaxed))
 | |
|                 ;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void unlock() { lock_.store(false, std::memory_order_release); }
 | |
| };
 | |
| 
 | |
| class Ann
 | |
| {
 | |
| 
 | |
| public:
 | |
|     int load(const char *modelPath,
 | |
|              bool fastMath,
 | |
|              bool fp16,
 | |
|              bool saveCachedNetwork,
 | |
|              const char *cachedNetworkPath)
 | |
|     {
 | |
|         INetworkPtr network = loadModel(modelPath);
 | |
|         IOptimizedNetworkPtr optNet = OptimizeNetwork(network.get(), fastMath, fp16, saveCachedNetwork, cachedNetworkPath);
 | |
|         const IOInfos infos = getIOInfos(optNet.get());
 | |
|         NetworkId netId;
 | |
|         mutex.lock();
 | |
|         Status status = runtime->LoadNetwork(netId, std::move(optNet));
 | |
|         mutex.unlock();
 | |
|         if (status != Status::Success)
 | |
|         {
 | |
|             return -1;
 | |
|         }
 | |
|         spinLock.lock();
 | |
|         ioInfos[netId] = infos;
 | |
|         mutexes.emplace(netId, std::make_unique<std::mutex>());
 | |
|         spinLock.unlock();
 | |
|         return netId;
 | |
|     }
 | |
| 
 | |
|     void execute(NetworkId netId, const void **inputData, void **outputData)
 | |
|     {
 | |
|         spinLock.lock();
 | |
|         const IOInfos *infos = &ioInfos[netId];
 | |
|         auto m = mutexes[netId].get();
 | |
|         spinLock.unlock();
 | |
|         InputTensors inputTensors;
 | |
|         inputTensors.reserve(infos->inputInfos.size());
 | |
|         size_t i = 0;
 | |
|         for (const BindingPointInfo &info : infos->inputInfos)
 | |
|             inputTensors.emplace_back(info.first, ConstTensor(info.second, inputData[i++]));
 | |
|         OutputTensors outputTensors;
 | |
|         outputTensors.reserve(infos->outputInfos.size());
 | |
|         i = 0;
 | |
|         for (const BindingPointInfo &info : infos->outputInfos)
 | |
|             outputTensors.emplace_back(info.first, Tensor(info.second, outputData[i++]));
 | |
|         m->lock();
 | |
|         runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
 | |
|         m->unlock();
 | |
|     }
 | |
| 
 | |
|     void unload(NetworkId netId)
 | |
|     {
 | |
|         mutex.lock();
 | |
|         runtime->UnloadNetwork(netId);
 | |
|         mutex.unlock();
 | |
|     }
 | |
| 
 | |
|     int tensors(NetworkId netId, bool isInput = false)
 | |
|     {
 | |
|         spinLock.lock();
 | |
|         const IOInfos *infos = &ioInfos[netId];
 | |
|         spinLock.unlock();
 | |
|         return (int)(isInput ? infos->inputInfos.size() : infos->outputInfos.size());
 | |
|     }
 | |
| 
 | |
|     unsigned long shape(NetworkId netId, bool isInput = false, int index = 0)
 | |
|     {
 | |
|         spinLock.lock();
 | |
|         const IOInfos *infos = &ioInfos[netId];
 | |
|         spinLock.unlock();
 | |
|         const TensorShape shape = (isInput ? infos->inputInfos : infos->outputInfos)[index].second.GetShape();
 | |
|         unsigned long s = 0;
 | |
|         for (unsigned int d = 0; d < shape.GetNumDimensions(); d++)
 | |
|             s |= ((unsigned long)shape[d]) << (d * 16); // stores up to 4 16-bit values in a 64-bit value
 | |
|         return s;
 | |
|     }
 | |
| 
 | |
|     Ann(int tuningLevel, const char *tuningFile)
 | |
|     {
 | |
|         IRuntime::CreationOptions runtimeOptions;
 | |
|         BackendOptions backendOptions{"GpuAcc",
 | |
|                                       {
 | |
|                                           {"TuningLevel", tuningLevel},
 | |
|                                           {"MemoryOptimizerStrategy", "ConstantMemoryStrategy"}, // SingleAxisPriorityList or ConstantMemoryStrategy
 | |
|                                       }};
 | |
|         if (tuningFile)
 | |
|             backendOptions.AddOption({"TuningFile", tuningFile});
 | |
|         runtimeOptions.m_BackendOptions.emplace_back(backendOptions);
 | |
|         runtime = IRuntime::CreateRaw(runtimeOptions);
 | |
|     };
 | |
|     ~Ann()
 | |
|     {
 | |
|         IRuntime::Destroy(runtime);
 | |
|     };
 | |
| 
 | |
| private:
 | |
|     INetworkPtr loadModel(const char *modelPath)
 | |
|     {
 | |
|         const auto path = std::string(modelPath);
 | |
|         if (path.rfind(".tflite") == path.length() - 7) // endsWith()
 | |
|         {
 | |
|             auto parser = armnnTfLiteParser::ITfLiteParser::CreateRaw();
 | |
|             return parser->CreateNetworkFromBinaryFile(modelPath);
 | |
|         }
 | |
|         else if (path.rfind(".onnx") == path.length() - 5) // endsWith()
 | |
|         {
 | |
|             auto parser = armnnOnnxParser::IOnnxParser::CreateRaw();
 | |
|             return parser->CreateNetworkFromBinaryFile(modelPath);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             std::ifstream ifs(path, std::ifstream::in | std::ifstream::binary);
 | |
|             auto parser = armnnDeserializer::IDeserializer::CreateRaw();
 | |
|             return parser->CreateNetworkFromBinary(ifs);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     static BindingPointInfo getInputTensorInfo(LayerBindingId inputBindingId, TensorInfo info)
 | |
|     {
 | |
|         const auto newInfo = TensorInfo{info.GetShape(), info.GetDataType(),
 | |
|                                         info.GetQuantizationScale(),
 | |
|                                         info.GetQuantizationOffset(),
 | |
|                                         true};
 | |
|         return {inputBindingId, newInfo};
 | |
|     }
 | |
| 
 | |
|     IOptimizedNetworkPtr OptimizeNetwork(INetwork *network, bool fastMath, bool fp16, bool saveCachedNetwork, const char *cachedNetworkPath)
 | |
|     {
 | |
|         const bool allowExpandedDims = false;
 | |
|         const ShapeInferenceMethod shapeInferenceMethod = ShapeInferenceMethod::ValidateOnly;
 | |
| 
 | |
|         OptimizerOptionsOpaque options;
 | |
|         options.SetReduceFp32ToFp16(fp16);
 | |
|         options.SetShapeInferenceMethod(shapeInferenceMethod);
 | |
|         options.SetAllowExpandedDims(allowExpandedDims);
 | |
| 
 | |
|         BackendOptions gpuAcc("GpuAcc", {{"FastMathEnabled", fastMath}});
 | |
|         if (cachedNetworkPath)
 | |
|         {
 | |
|             gpuAcc.AddOption({"SaveCachedNetwork", saveCachedNetwork});
 | |
|             gpuAcc.AddOption({"CachedNetworkFilePath", cachedNetworkPath});
 | |
|         }
 | |
|         options.AddModelOption(gpuAcc);
 | |
| 
 | |
|         // No point in using ARMNN for CPU, use ONNX (quantized) instead.
 | |
|         // BackendOptions cpuAcc("CpuAcc",
 | |
|         //                       {
 | |
|         //                           {"FastMathEnabled", fastMath},
 | |
|         //                           {"NumberOfThreads", 0},
 | |
|         //                       });
 | |
|         // options.AddModelOption(cpuAcc);
 | |
| 
 | |
|         BackendOptions allowExDimOpt("AllowExpandedDims",
 | |
|                                      {{"AllowExpandedDims", allowExpandedDims}});
 | |
|         options.AddModelOption(allowExDimOpt);
 | |
|         BackendOptions shapeInferOpt("ShapeInferenceMethod",
 | |
|                                      {{"InferAndValidate", shapeInferenceMethod == ShapeInferenceMethod::InferAndValidate}});
 | |
|         options.AddModelOption(shapeInferOpt);
 | |
| 
 | |
|         std::vector<BackendId> backends = {
 | |
|             BackendId("GpuAcc"),
 | |
|             // BackendId("CpuAcc"),
 | |
|             // BackendId("CpuRef"),
 | |
|         };
 | |
|         return Optimize(*network, backends, runtime->GetDeviceSpec(), options);
 | |
|     }
 | |
| 
 | |
|     IOInfos getIOInfos(IOptimizedNetwork *optNet)
 | |
|     {
 | |
|         struct InfoStrategy : IStrategy
 | |
|         {
 | |
|             void ExecuteStrategy(const IConnectableLayer *layer,
 | |
|                                  const BaseDescriptor &descriptor,
 | |
|                                  const std::vector<ConstTensor> &constants,
 | |
|                                  const char *name,
 | |
|                                  const LayerBindingId id = 0) override
 | |
|             {
 | |
|                 IgnoreUnused(descriptor, constants, id);
 | |
|                 const LayerType lt = layer->GetType();
 | |
|                 if (lt == LayerType::Input)
 | |
|                     ioInfos.inputInfos.push_back(getInputTensorInfo(id, layer->GetOutputSlot(0).GetTensorInfo()));
 | |
|                 else if (lt == LayerType::Output)
 | |
|                     ioInfos.outputInfos.push_back({id, layer->GetInputSlot(0).GetTensorInfo()});
 | |
|             }
 | |
|             IOInfos ioInfos;
 | |
|         };
 | |
| 
 | |
|         InfoStrategy infoStrategy;
 | |
|         optNet->ExecuteStrategy(infoStrategy);
 | |
|         return infoStrategy.ioInfos;
 | |
|     }
 | |
| 
 | |
|     IRuntime *runtime;
 | |
|     std::map<NetworkId, IOInfos> ioInfos;
 | |
|     std::map<NetworkId, std::unique_ptr<std::mutex>> mutexes; // mutex per network to not execute the same the same network concurrently
 | |
|     std::mutex mutex; // global mutex for load/unload calls to the runtime
 | |
|     SpinLock spinLock; // fast spin lock to guard access to the ioInfos and mutexes maps
 | |
| };
 | |
| 
 | |
| extern "C" void *init(int logLevel, int tuningLevel, const char *tuningFile)
 | |
| {
 | |
|     LogSeverity level = static_cast<LogSeverity>(logLevel);
 | |
|     ConfigureLogging(true, true, level);
 | |
| 
 | |
|     Ann *ann = new Ann(tuningLevel, tuningFile);
 | |
|     return ann;
 | |
| }
 | |
| 
 | |
| extern "C" void destroy(void *ann)
 | |
| {
 | |
|     delete ((Ann *)ann);
 | |
| }
 | |
| 
 | |
| extern "C" int load(void *ann,
 | |
|                     const char *path,
 | |
|                     bool fastMath,
 | |
|                     bool fp16,
 | |
|                     bool saveCachedNetwork,
 | |
|                     const char *cachedNetworkPath)
 | |
| {
 | |
|     return ((Ann *)ann)->load(path, fastMath, fp16, saveCachedNetwork, cachedNetworkPath);
 | |
| }
 | |
| 
 | |
| extern "C" void unload(void *ann, NetworkId netId)
 | |
| {
 | |
|     ((Ann *)ann)->unload(netId);
 | |
| }
 | |
| 
 | |
| extern "C" void execute(void *ann, NetworkId netId, const void **inputData, void **outputData)
 | |
| {
 | |
|     ((Ann *)ann)->execute(netId, inputData, outputData);
 | |
| }
 | |
| 
 | |
| extern "C" unsigned long shape(void *ann, NetworkId netId, bool isInput, int index)
 | |
| {
 | |
|     return ((Ann *)ann)->shape(netId, isInput, index);
 | |
| }
 | |
| 
 | |
| extern "C" int tensors(void *ann, NetworkId netId, bool isInput)
 | |
| {
 | |
|     return ((Ann *)ann)->tensors(netId, isInput);
 | |
| } |