mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-31 18:58:56 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			59 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			59 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from enum import Enum
 | |
| from typing import Any, Protocol, TypedDict, TypeGuard
 | |
| 
 | |
| import numpy as np
 | |
| import numpy.typing as npt
 | |
| from pydantic import BaseModel
 | |
| 
 | |
| 
 | |
| class StrEnum(str, Enum):
 | |
|     value: str
 | |
| 
 | |
|     def __str__(self) -> str:
 | |
|         return self.value
 | |
| 
 | |
| 
 | |
| class TextResponse(BaseModel):
 | |
|     __root__: str
 | |
| 
 | |
| 
 | |
| class MessageResponse(BaseModel):
 | |
|     message: str
 | |
| 
 | |
| 
 | |
| class BoundingBox(TypedDict):
 | |
|     x1: int
 | |
|     y1: int
 | |
|     x2: int
 | |
|     y2: int
 | |
| 
 | |
| 
 | |
| class ModelType(StrEnum):
 | |
|     CLIP = "clip"
 | |
|     FACIAL_RECOGNITION = "facial-recognition"
 | |
| 
 | |
| 
 | |
| class ModelRuntime(StrEnum):
 | |
|     ONNX = "onnx"
 | |
|     ARMNN = "armnn"
 | |
| 
 | |
| 
 | |
| class HasProfiling(Protocol):
 | |
|     profiling: dict[str, float]
 | |
| 
 | |
| 
 | |
| class Face(TypedDict):
 | |
|     boundingBox: BoundingBox
 | |
|     embedding: npt.NDArray[np.float32]
 | |
|     imageWidth: int
 | |
|     imageHeight: int
 | |
|     score: float
 | |
| 
 | |
| 
 | |
| def has_profiling(obj: Any) -> TypeGuard[HasProfiling]:
 | |
|     return hasattr(obj, "profiling") and isinstance(obj.profiling, dict)
 | |
| 
 | |
| 
 | |
| def is_ndarray(obj: Any, dtype: "type[np._DTypeScalar_co]") -> "TypeGuard[npt.NDArray[np._DTypeScalar_co]]":
 | |
|     return isinstance(obj, np.ndarray) and obj.dtype == dtype
 |