mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-31 02:39:03 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			33 lines
		
	
	
		
			953 B
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			33 lines
		
	
	
		
			953 B
		
	
	
	
		
			Python
		
	
	
	
	
	
| from tensorflow.keras.applications import InceptionV3
 | |
| from tensorflow.keras.applications.inception_v3 import preprocess_input, decode_predictions
 | |
| from tensorflow.keras.preprocessing import image
 | |
| import numpy as np
 | |
| 
 | |
| IMG_SIZE = 299
 | |
| PREDICTION_MODEL = InceptionV3(weights='imagenet')
 | |
| 
 | |
| 
 | |
| def classify_image(image_path: str):
 | |
|     img_path = f'./app/{image_path}'
 | |
|     img = image.load_img(img_path, target_size=(IMG_SIZE, IMG_SIZE))
 | |
|     x = image.img_to_array(img)
 | |
|     x = np.expand_dims(x, axis=0)
 | |
|     x = preprocess_input(x)
 | |
| 
 | |
|     preds = PREDICTION_MODEL.predict(x)
 | |
|     result = decode_predictions(preds, top=3)[0]
 | |
|     payload = []
 | |
|     for _, value, _ in result:
 | |
|         payload.append(value)
 | |
| 
 | |
|     return payload
 | |
| 
 | |
| 
 | |
| def warm_up():
 | |
|     img_path = f'./app/test.png'
 | |
|     img = image.load_img(img_path, target_size=(IMG_SIZE, IMG_SIZE))
 | |
|     x = image.img_to_array(img)
 | |
|     x = np.expand_dims(x, axis=0)
 | |
|     x = preprocess_input(x)
 | |
|     PREDICTION_MODEL.predict(x)
 |