mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-31 02:39:03 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			47 lines
		
	
	
		
			1023 B
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			1023 B
		
	
	
	
		
			Python
		
	
	
	
	
	
| from pydantic import BaseModel
 | |
| from fastapi import FastAPI
 | |
| 
 | |
| from .object_detection import object_detection
 | |
| from .image_classifier import image_classifier
 | |
| 
 | |
| from tf2_yolov4.anchors import YOLOV4_ANCHORS
 | |
| from tf2_yolov4.model import YOLOv4
 | |
| 
 | |
| 
 | |
| HEIGHT, WIDTH = (640, 960)
 | |
| 
 | |
| # Warm up model
 | |
| image_classifier.warm_up()
 | |
| app = FastAPI()
 | |
| 
 | |
| 
 | |
| class TagImagePayload(BaseModel):
 | |
|     thumbnail_path: str
 | |
| 
 | |
| 
 | |
| @app.post("/tagImage")
 | |
| async def post_root(payload: TagImagePayload):
 | |
|     image_path = payload.thumbnail_path
 | |
| 
 | |
|     if image_path[0] == '.':
 | |
|         image_path = image_path[2:]
 | |
| 
 | |
|     return image_classifier.classify_image(image_path=image_path)
 | |
| 
 | |
| 
 | |
| @app.get("/")
 | |
| async def test():
 | |
| 
 | |
|     object_detection.run_detection()
 | |
|     # image = tf.io.read_file("./app/cars.jpg")
 | |
|     # image = tf.image.decode_image(image)
 | |
|     # image = tf.image.resize(image, (HEIGHT, WIDTH))
 | |
|     # images = tf.expand_dims(image, axis=0) / 255.0
 | |
| 
 | |
|     # model = YOLOv4(
 | |
|     #     (HEIGHT, WIDTH, 3),
 | |
|     #     80,
 | |
|     #     YOLOV4_ANCHORS,
 | |
|     #     "darknet",
 | |
|     # )
 |